in better than 98% purity by the dehydration of 3,3-dimethyl-1-butanol over this catalyst. Previous methods of dehydrating this alcohol were accompanied by appreciable rearrangement.⁵

The mechanism suggested here seems to be the most reasonable. However, one involving participation by a neighboring group is not excluded.⁶

Further work with these and other alcohols and with bases other than ammonia and the study of the details of the mechanism are currently being carried out.

(5) V. N. lpatieff, W. W. Thompson and H. Pines, THIS JOURNAL, 73, 553 (1951).

(6) S. Winstein, B. K. Morse, E. Grunwald, K. C. Schreiber and J. Corse, *ibid.*, **74**, 1113 (1952), and other papers in that series.

The Ipatieff High Pressure and Catalytic Laboratory Northwestern University Herman Pines Evanston, Illinois C. N. Pillai

RECEIVED MARCH 14, 1960

THE BIOSYNTHESIS OF TETRACYCLINE ANTIBIOTICS

Sir:

Inspection of the formulas of tetracycline antibiotics, *e.g.*, oxytetracycline, I, suggests that a considerable part of the molecule may arise biosynthetically by the acetic acid route,^{1,2,3} with the probable introduction of one methyl group bonded to carbon and two methyl groups bonded to the amino nitrogen group.

The first experimental support for this idea was provided by Snell, *et al.*,² who showed that sodium acetate-2-C¹⁴ was a fermentation precursor (incorporation 5–10%) by a fairly direct route, since the specific activity of the product was directly proportional to the quantity of tracer added. Degradation² showed less activity in ring A than in rings B, C and D. Glutamate has been found to be a unique amino-acid source of oxytetracycline in a semi-synthetic medium, and addition to a fermentation of (±)glutamic acid-2-C¹⁴ gave an active oxytetracycline. Degradation of the product showed that terracinoic acid (from rings B, C, D) contained only 5% of the activity, suggesting that glutamate may be a fairly direct precursor of part at least of ring A.³

Detailed degradations have now been carried out on oxytetracycline derived from (i) $C^{14}H_3$ methionine and (ii) $2-C^{14}H_3CO_2H$. (i) Oxytetracycline (r.m.a.⁴ 50.9 × 10³) gave by Kuhn-Roth oxidation CH_3CO_2H (r.m.a. of BaCO₃ from the CH₃ group, 17.3 × 10³; r.m.a. of BaCO₃ from the CO₂H, 0) and by standard degradation⁵ to tetramethylammonium iodide (r.m.a. 34.8 × 10³). All the activity, as expected, is in the C₆-CH₃ and the N(CH₃)₂, the activity of all CH₃ groups being the same. (ii) Oxytetracycline (r.m.a.

(1) A. J. Birch, Fortschr. Chem. Org. Naturstoffe, Springer, Vienna, 14, 186 (1957); R. Robinson, "Structural Relations of Natural Products," Oxford Press, New York, N. Y., 1955.

(2) J. F. Snell, R. L. Wagner and F. A. Hochstein, "Internat. Conf. on Peaceful Uses of Atomic Energy," **12**, 431 (1956).


(3) J. F. Snell, in "Radioactivity for Pharmaceutical and Allied Research Laboratories," Academic Press, Inc., New York, N. Y., in press.

(4) Relative molar activity, proportional to molar activity of.6

(5) F. A. Hochstein, C. R. Stephens, L. H. Conover, P. P. Regna, R. Pasternak, P. N. Gordon, F. J. Pilgrim, K. J. Brunings and R. B. Woodward, THIS JOURNAL, **75**, 5455 (1953), and references cited therein. 42.2 \times 10³) from C¹⁴H₃CO₂H after degradations⁵ gave products with these r.m.a. \times 10⁻³: terracinoic acid, 27.1; 7-acetoxy-3-methylphthalide 18.7; decarboxyterracinoic acid 26.4; BaCO₃ from C₁₁, 0.3; BaCO₃ from C₆, 4.0; BaCO₃ from C₆-CH₂, 0.3; BaCO₃ from C₂-CONH₂, 0.6; tetramethylanmonium iodide, 0.5.

These results are quantitatively in accord with the production of the molecule by the head to tail linkage of acetic acid units at least from C_{5} - C_{12} (except C_{6} -CH₃). It is necessary to assume that the incorporated unit from C¹⁴H₃CO₂H has its activity randomized to the extent of 5% and that the methyl-pool has become slightly labelled from this source. It is likely that the glutamate portion extends from the C₂-CONH₂, which is differently labelled to an acetate carboxyl, through C_2 to C_{4a} . Degradations to deal with this part of the molecule are inefficient.

The results are in accord with the distributions of label shown in I: (i) r.m.a. contributions of a, b, d = 0, $c = 17.3 \times 10^3$; (ii) r.m.a. contributions of $a = 4 \times 10^3$; $b = 0.3 \times 10^3$; $c = 0.25 \times 10^3$; with glutamic acid-2-C¹⁴ as source the r.m.a. contribution of d is much greater than a, b and c.

We are indebted to Dr. Herchel Smith for assistance with some of the tracer measurements; financial aid from the Rockefeller Foundation and Chas. Pfizer & Co., Inc., supported parts of the work.

(6) A. J. Birch, R. A. Massy-Westropp, R. W. Rickards and H. Smith, J. Chem. Soc. (London), 360 (1958).

RADIOBIOCHEMISTRY DEPARTMENT	
Chas. Pfizer & Co., Inc.	J. F. Snell
Brooklyn 6, New York	
THE UNIVERSITY	
Manchester, 13	A. J. Birch
England	P. L. Thomson
RECEIVED MARCH 21 1960	

RECEIVED MARCH 21, 1960

A NEW CLASS OF ACTIVE STEROIDS : THE 19-NOR- $\Delta^{4,9}$ -3-KETOSTEROIDS

Sir:

Since the initial demonstration that Δ^{1} -unsaturation of the corticoids results in enhanced biological and therapeutic activity,¹ numerous investigations have been made of other conjugated systems. The $\Delta^{4,6}$ -unsaturated derivatives of the

(1) H. L. Herzog, A. Nobile, S. Tolksdorf, W. Charney, E. B. Hershberg, P. L. Perlman and M. M. Pechet, Science, 121, 176 (1955).